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Abstract

The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two

sensors measure different properties of the real three-dimensional (3-D) world. Forming the

sensor outputs into a common format does not mask these differences. In this paper, the

conditions under which fusion of the two sensor signals is possible are explored. The program

currently planned to investigate this problem is briefly discussed.

Introduction

Westinghouse has been developing novel adverse weather landing aids for commercial and

military aircraft. We have concluded that it will be necessary to use a multiple sensor suite to

provide both an active radar imaging sensor, and a passive imaging E-O sensor. The radar

imager provides excellent penetration of adverse weather, but has limited angular resolution.

The E-O sensor provides very good angular resolution but is severely affected by adverse

weather such as fog, rain or snow. The fundamental property that distinguishes the two sensor

classes is operating wavelength. This is both the driver on adverse weather penetration, and

the driver on angular resolution. When the wavelength is greater than the size of atmospheric

aerosols and raindrops, the penetration is good. When the wavelength is small compared to the

receiving aperture, the resolution is good.

For the current paper, an equally important distinction is the difference between active sensing

and passive sensing. An active sensor provides its own illumination of the scene to be imaged,

while a passive sensor depends on either some external illuminator, or on self-emitted radiation

of the objects being imaged. An active sensor has an advantage in that the properties of the

illuminating waveform can be exploited for coherent detection of reflected energy. This

dependence on reflected (i.e. back scattered) energy determines how the active sensor images

a real 3-D scene. Specifically, electromagnetic properties that are determined by the surface

to some depth are important in determining the reflection characteristics. In addition,

macroscopic scale features are important since energy can experience multiple reflections before

being returned to the receiver.

For the E-O sensor the considerations are very different. Few surfaces are optically smooth.

Thus the behavior of such surfaces in reflected light is significantly different than the behavior

of the self-emitted energy. Multiple reflections of emitted or reflected energy play a minimal

role in determining signal. The properties that determine reflection or absorption are not well

correlated with the bulk properties that determine reflection and absorption at radar wavelengths.
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The third distinction betweenradar and E-O sensorsis that different evolutionarypathshave
resultedin radarproviding very preciserangeand rangerate measurementswith only limited
emphasison receivedsignal strengthwhich is theonly property usuallyquantifiedwith anE-O
sensor. For the applicationat hand, the radar imageis returnedas a rangeversusazimuth
angle using an antennathat is mechanicallyscanned,and which hasa shapedbeampattern
designedto minimizethevariationof signalwith elevationangle,undertheassumptionof flight
nearlyparallelto thegroundwherereturnsoriginate. Theuseof rangeversusangleasopposed
to signal return level versusanglepresentssomechallenges. Height of a return sourceabove
terrain is lost. Converting from an azimuth/range/intensity image to an
azimuth/elevation/intensityimagerequiresanassumptionabouttheheightof thereturn sources.
Figure 1 showsanE-O sensorimageof a runwayat theSalsburyMD airport. Figure 2 shows
thesamerunwayasviewedusinganX-Band(10GHz) radaroperatedin theMonopulseGround
Map(MGM) mode. Figure2 wasderivedfrom Figure3 (azimuth/range/intensity)by assuming
thatall reflectingelementsarein a groundplanewhich hasa known orientationwith respectto
the flight path. As shownin Figure 4, eachrangecell in the radar return is assignedan
elevationangleon thebasisof the aircraft heightabovethegroundplane. While therearea
numberof importanterror sourceswhich mustbeaccountedfor in this process,for the purpose
of this paper,it is sufficientto assumethatthosedifficulties will beovercome,andthata proper
imagein angle/angle/intensityformat will be achieved.

Fusion Technique

Westinghouse has approached the task of Radar E-O image fusion as an evolution of previously

developed technology. The MGM mode for the radar, coupled with a transformation from

azimuth/range to azimuth/elevation produces an image which has a compatible format with

standard E-O images and displays. Westinghouse has also been participating with the David

Sarnoff Research Center in a program that uses pyramid decomposition of visible and IR E-O

images to construct fused images. That program has advanced to the point where real time

operation at television rates and resolutions will be possible in the very near future. Combining

these two developments provides a path to the desired Radar E-O fusion. The paper by Dr.

Hannah at this workshop describes the pyramid fusion technique for visible and IR images. The
interested reader will find additional information in references 1-3.

Figure 5 shows the general arrangement of a postulated Radar E-O image fusion system. The

Radar is operated in the MGM mode and creates angle/range/intensity images at a low frame

rate. These are converted to angle/angle/intensity images using a combination of on-board

inertial and altitude sensors. The images are used to generate a 30 Hz image stream by motion

compensation plus image extrapolation. This step may occur either before or after pyramid

decomposition, depending on engineering details. The Radar images are decomposed using

pyramid decomposition. The E-O images are similarly decomposed, so that features from both

images can be identified, matched, and registered. Feature blending/selection is used to

produce the composite image in transform space. This image is then inverse transformed, using

the merged pyramids to construct the angle/angle/intensity image. Standard processes, such as

gain and level adjustment, are then used to correct that image prior to display.
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The pyramid decompositionhasthe effect of generatingintermediateimageswhich contain a
limited rangeof spatialfrequencies. Thus, the decompositionof a high resolutionE-O image
will result in transformedimagesthathaveresolutioncompatiblewith theRadarresolution. By
suitablechoiceof scanangles,samplingrates,andoptical design,thereducedresolutionimage
will matchthe resolutionof the Radarsuchthat direct comparisonand fusion of featureswill
be possible. Figure 6 showsthe decompositionand featurematchprocesses. The fusion
process,representedby a singleblock, is a variant of thepreviouslypublishedwork.

Each cycle of the pyramid decompositionproducesa bandpassimage (the Laplacian) that
containsone octaveof spatial frequencydata, plus a residueimage that containsall spatial
frequenciesfrom zero to the lower limit of the bandpassimage. The two imagesourcescan,
by suitablechoiceof samplinggrids, provideban@assimagesthat sharea commonrangeof
spatialfrequencies. It is alsoa propertyof thepyramid decompositionprocessthat the spatial
coordinatesof eachfeaturearepreservedin the transformprocess. Thus, eachfeaturewill be
representedby both spatial coordinatesand spatial frequency content. Relatively simple
operationssuchas rectificationand threshholdingpermit the determinationthat the featureis
present. If sucha testis satisfiedin both images,then the featurescanbe fused into a single
featurethat canbe displayed. In addition, a featurepresentin oneimage, but not the other,
canbe usedin the compositeimage. This will provide an imagecontainingthe information
from both sources.

Fusion Issues

The above discussion of Radar E-O fusion has glossed over several potential difficulties. The

most obvious is commensurability. Are the features in a Radar image sufficiently similar in

size, shape, location, or intensity to be clearly identifiable as the same feature by some analytic

rule? Is the only answer to this question anecdotal, or is there a formal method for resolving

this issue?

One approach to the commensurability is shown in Figure 7. Both scenes are derived from the

same 3-D real world. Each of the sensors has performed a transform into one or more spaces

depending on where we choose to view the image. If we can add a transform to one or both

images which produces intermediate images which are demonstrably the same for equal real

world inputs, then, in that transform space, they are commensurable and can be merged. As

inspection of Figure 7 shows, it is a generalization of Figure 5 which is the particular transform

path we are exploring.

Another issue might be called "fusability". If we identify a feature from both sensors, and can

conclude that it is the same feature, we are still left with the need to transform the features in

such a way as to provide commensurability in intensity space. We have not envisioned an

alternative since the objective is to provide an intensity/angle/angle image for a pilot. The

fusability issue is also linked with the issue of deciding which sensor contributes how much to

the final image. The visible IR fusion effort used a binary decision rule, but we anticipate that

a blending rule will prove advantageous in the present case. Some departure from current

radar practice may be needed to assess the image quality of the radar signal, and assign the

transformed image an equivalent intensity for a blending rule.
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Still anotherissueof concern is the subject of clutter. Spatial clutter is a potential problem for

both sensors, while temporal clutter is observed in Radar images. Such clutter complicates the

processing task, since it represents additional features which must be analyzed. Applying image

extrapolation to achieve compatibility with the 30 Hz video, may aggravate clutter as a

distraction to the pilot. The low sample rate which is provided by the radar is effectively

aliased into higher temporal frequencies by any extrapolation algorithm.

Current Plans

Westinghouse is engaged in an analytic and experimental program to investigate these issues.

The analytic program includes development of basic theoretical models for the sensor

phenomenology, as well as investigations using simultaneous data from multiple sensors. To

address these issues requires that a significant data base be available. Westinghouse has an

instrumented aircraft that provides both radar and E-O sensors with digital data collection.

Initial efforts will include collecting data from the Westinghouse MODARS weather radar

together with visible and IR E-O data. This will be processed in our image processing

laboratory to evaluate algorithms and assess fundamental problems which must be solved.

From these results, we plan to formulate a program where the fusion process can be

implemented as a real time airborne process.

Conclusions

The fusion of Radar and E-O sensor data will provide the ability to select an optimum mix of

resolution and penetration for each weather condition that will be encountered. To be effective,

the fundamentals of fusion across different image domains must be established so that a fully

automated fusion system can be implemented. The spatially coherent pyramid decomposition

technique appears to offer significant benefits in this fusion effort. There are fundamental

unanswered questions which must be addressed. In addition, the experimental data base

required to assess alternative theories has not been obtained. Westinghouse has initiated a

program that will address the theoretical and experimental issues of Radar E-O fusion.
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Figure 1 Visible Sensor Image of Runway and Environs

Figure 2 Angle/Angle Radar Image of Runway and Environs
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Figure 3 Azimuth/Range Radar Image of Runway and Environs
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Figure 4 Conversion from Radar Range to Elevation
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Figure 5 Radar/E-O Fusion Using Pyramid Transform
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Figure 6 Reduced E-O Resolution Matches Radar Resolution
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Figure 7 Generalized Radar E-O Fusion Using Transforms
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IV. IMAGE PROCESSING: COMPUTER VISION




